
Brain Upgrade — Learn Anything In Under 2 Hours

 CSS Preprocessor

Jérémy Mouzin

Sass
Level 0 - For beginners

Brain Upgrade Book Concept

You’re busy. I get it.

You want to learn Sass from scratch fast.

You don’t want to spend hours deciphering boring
documentation or searching answers on StackOverflow.

Brain Upgrade collections are explicitly designed for this.  
In this book you’ll get:

- Straight to the point concise and clear core concepts

- Well designed examples that actually teach you
something

- Everything you need to be up and running for Sass
production code in under 2 hours

- Well explained answers of the top 10 most asked
questions about Sass on StackOverflow

No introduction, no history, no fluff, no bullshit, no
conclusion. Just a Fast and HappyTM learning! 

jeremymouzin.com �2

https://jeremymouzin.com

Contact For Help

If you have any problem while applying the knowledge in
this book please contact me. I’m here to help you learn,
don’t be shy! I don’t want you to be stuck, I know how
much frustrating it is.

I would have loved to have such a free service while
learning Sass so don’t hesitate to contact me, you’ll make
me happy :o).

live:jeremy.mouzin 
jeremy.mouzin@gmail.com

I’m available on Skype to help you live from Monday to
Friday (9:00 AM — 6:00 PM UTC+01:00).

I’m waiting for your call.  

jeremymouzin.com �3

https://jeremymouzin.com

Why Learning Sass?

When you write a lot of CSS your stylesheets quickly
become huge, repetitive, and difficult to maintain. CSS is a
great language, but it lacks lots of features to help you
write better stylesheets, fast.

You may also want to use again some particular resources
like color palettes or a specific design across several
projects.

Sass lets you ease the creation and the maintenance of
your stylesheets, allow you to reuse previous work in
seconds and will make you save a ton of time in the
process.

Bonus point: it’s a highly demanded skill by employers,
so if you’re looking for a front-end dev job nowadays, don’t
hesitate to learn it! Keep reading!

Let’s install this marvelous tool! You can skip this step and
directly use SassMeister online tool instead. It will produce
CSS from your Sass syntax right from your browser! 

jeremymouzin.com �4

https://jeremymouzin.com
https://www.sassmeister.com/

Installation

This may be the most difficult part of this book, so please
don’t hesitate to call me to get help.

Open a terminal to get a command line and install Sass on
your computer.

If you’re on Linux, type:  

command line

sudo gem install sass —no-user-install

If you’re on MacOS, type:  

command line

sudo gem install sass

jeremymouzin.com �5

https://jeremymouzin.com

If you’re on Windows:

1. Install Ruby installer

2. Run `cmd` to open a terminal window

3. Type: 

command line

gem install sass 

Sass should now be installed on your computer. Double-
check by typing: 

command line

sass -v 

It should return Ruby Sass 3.5.6 or a newer version.

Congratulations! You’ve successfully installed
Sass on your computer, you’re ready to go! 

jeremymouzin.com �6

https://jeremymouzin.com
https://rubyinstaller.org/downloads/

How Sass Works

Sass transforms a source file that uses Sass syntax into a
valid CSS stylesheet, ready for production.

Sass source files use .scss extension. SCSS means Sassy
CSS. The output is a CSS stylesheet with .css extension.

 
Linking to a Sass source .scss file from your HTML
won’t work. You must use the generated .css file. 

jeremymouzin.com �7

style.scss

$my-color: #C69;

body {

 color: $my-color;

}

style.css

body {

 color: #C69;

}

sass style.scss style.css

Sass 
preprocessing…

index.html

<link 
 rel=“stylesheet” 
 href=“style.css”>

!

https://jeremymouzin.com

Generate Your First Stylesheet

Create a file style.scss with the content below:  

style.scss

h1 { 
 color: #CC6699; 
} 

This file doesn’t use any Sass features yet. But you can
already use it as a source file.

From the directory where you created style.scss, type: 

command line

sass style.scss style.css

This creates the style.css file that you will use in your
HTML header.

jeremymouzin.com �8

https://jeremymouzin.com

Note that this command also generates one new file and
one new hidden directory: 

.sass-cache/ // Hidden directory (starts by a dot) 
style.css.map // Map file

Plus, you’ll see a strange line at the end of the generated
CSS stylesheet: 

style.css (end of file)

/*# sourceMappingURL=style.css.map */ 

Don’t worry about these. They’re just Sass internal
plumbing to speed up the preprocessing computation.

They are useful only for the generation of the CSS
stylesheet from your source file. Don’t upload them to your
website, they’re not necessary.

Once you’re done developing you can delete them safely.

jeremymouzin.com �9

https://jeremymouzin.com

Speed Up Your Development
Process

It’s cumbersome to always have to run sass command line
tool to produce the corresponding CSS stylesheet.

To ease the development process, you should use the
option --watch like this: 

command line

sass --watch style.scss:style.css

Note the colon ‘:’ between the source and the destination
file. Don’t forget it or it won’t work.

This text will appear in your terminal after a few seconds:  

>>> Sass is watching for changes. Press Ctrl-C to stop.
 write style.css
 write style.css.map

jeremymouzin.com �10

https://jeremymouzin.com

Sass tells you that it’s now watching your source file and
has just written style.css and style.css.map.

Don’t close your terminal window or hit Ctrl+C
otherwise sass won’t watch your files anymore.

If you need a new terminal, just open a new terminal
window.

The magical --watch option will detect automatically the
changes in your Sass source file and process them to
produce the new corresponding CSS stylesheet.

Each time you change your style.scss source file and save
it, the style.css file will be rewritten.

This way you always see the results in your style.css file
while working only on style.scss. 

jeremymouzin.com �11

!

https://jeremymouzin.com

Watch Your Files And Make Your First
Change

Monitor your source file style.scss by typing:  

command line

sass --watch style.scss:style.css

// Wait for these lines to appear
>>> Sass is watching for changes. Press Ctrl-C to stop.
 write style.css
 write style.css.map

Now modify style.scss, change the color value from
#CC6699 to #FF9800:  

style.scss

h1 { 
 color: #FF9800; 
}

jeremymouzin.com �12

https://jeremymouzin.com

As soon as you save your modifications, you’ll see the
command line prompt display a new message: 

command line

>>> Change detected to: style.scss
 write style.css
 write style.css.map

Check your style.css content, it should be updated:  

style.css

h1 { 
 color: #FF9800; }

Congratulations! You’ve just generated
automatically your CSS from your Sass file!

You can see that the last closing curly bracket is not on its
own line like it was in the original Sass source file. That’s

jeremymouzin.com �13

https://jeremymouzin.com

normal, it’s just the default nested style that is applied to
your output by the sass command line tool.

If it bothers you, you can set the style to expanded by
using the --style option like this:  

command line

sass --watch --style expanded style.scss:style.css

Modify the original source file, save it and you’ll see the
curly bracket on its own line again.

The different options available for the style flag are here.
In the rest of this book we’ll use the default nested style.

Now that you know how to work with Sass, let’s spice
things up by learning some very nice features!  

jeremymouzin.com �14

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#output_style
https://jeremymouzin.com

Variables

You can store any CSS value you can think of in variables
to reuse them in your stylesheet wherever you want.

A variable must be first declared before using it.

Example 

style.scss

// Declare a variable named hop-brush with value #C69
$hop-bush: #C69; 

// Use the variable to set body font color
body { 
 color: $hop-bush; 
} 

You can use variables for all CSS types of values: colors,
font sizes, distances, font families etc.  

jeremymouzin.com �15

https://jeremymouzin.com

Example 

style.scss

// Use any valid CSS color format
$hop-bush: #CC6699;
$hop-bush: rgb(204,102,153);
$hop-bush: hsl(330, 50%, 60%);

// You can use numbers in variables names
$padding: 16px;
$padding-2x: 32px;
$padding-3x: 48px;

// Due to historical reasons, hyphens and
// underscores are interchangeable
$chameleon-width: 20%;
$chameleon_height: 30%;
#chameleon {
 // Variables names are valid
 width: $chameleon_width;
 height: $chameleon-height;
}

// You can really use any valid CSS value format
$border: 1px solid green;
$margins: 10em 12px 8rem 0;

jeremymouzin.com �16

https://jeremymouzin.com

 
// Strings are valid no matter if you use no quote,
// simple or double quotes
$default-font: Source Sans Pro, "Helvetica", 'sans-
serif'; 

Even if hyphens and underscores are
interchangeable in variables names, you should
stick with only one or the other. Stay consistent.

jeremymouzin.com �17

https://jeremymouzin.com

Variables Scopes

Sass allows you to declare variables inside a block.

But first, some definitions.  

style.scss

body {
 $my-color: #042; // Declare $my-color variable
 color: $my-color;
}

Block: file area contained between an opened curly
bracket and a closed curly bracket.

Variable scope: file area where you can access and use a
variable.

By default, the scope of a variable starts from its
declaration to the end of the current block.

jeremymouzin.com �18

https://jeremymouzin.com

Therefore the scope of the variable $my-color is the whole
body selector rule block represented by the vertical blue
line to the left.

For variables declared outside of any block, they’re
accessible from the declaration until the end of the file.
They’re also accessible within any block in that space.

Let’s see an example of several variables declared
outside and inside blocks.  

jeremymouzin.com �19

https://jeremymouzin.com

Example 

style.scss

$global-color: #F16;

html {
 background-color: $my-color; // Not accessible
}

$my-color: #C69;

body {
 $local-color: #F1C;
 color: $my-color; // Correct
 background-color: $local-color; // Correct
}

div {
 background-color: $my-color; // Correct
 color: $global-color; // Correct
 border: 1px solid $local-color // Not accessible
}

jeremymouzin.com �20

https://jeremymouzin.com

Make A Variable Scope Global

You can make a variable accessible from outside its
declaration block by using the !global flag like this:  

style.scss

body {
 $max-width: 800px;
 $max-width-global: 800px !global;

 max-width: $max-width; // Correct
 max-width: $max-width-global; // Correct
}

#main {
 max-width: $max-width; // Not accessible
 max-width: $max-width-global; // Correct
}

The !global flag is useful when you use several different
Sass source files to produce one CSS stylesheet.  

jeremymouzin.com �21

https://jeremymouzin.com

Nevertheless, you should use it sparingly because
it makes the source files less readable in term of
which variable you can use or not at your current
position.

You know the !important flag in CSS? Well, the !global one
is quite similar, use it as a last resort.

Congratulations! You know everything there is to
know about variables, you’ll love using them!  

jeremymouzin.com �22

https://jeremymouzin.com

Comments

They’re the same as in CSS.

One line comments start with //. 
Multiline comments are surrounded by /* */.

One line comments are not copied to the CSS stylesheet.

Multiline comments are copied to the CSS stylesheet.

Example 

style.scss

// This comment won’t be found in the final stylesheet
// This one neither :(

/* This one will: it uses multiline delimiters! :) */

/* You can store some useful information using
comments, like the version of your stylesheet */

jeremymouzin.com �23

https://jeremymouzin.com

This will produce: 

style.css

/* This one will: it uses multiline delimiters! :) */

/* You can store some useful information using
comments, like the version of your stylesheet */

jeremymouzin.com �24

https://jeremymouzin.com

Interpolation #{ }

Sass variables can be used in CSS selectors and property
names. But you can’t just use the $var syntax. Indeed you
cannot do this: 

you-cannot-do-this.scss

$class-name: my-great-class;
$attribute: border;

p.$class-name { // Incorrect
 $attribute-color: blue; // Incorrect
}

Sass will try to use the $attribute-color variable (instead of
$attribute) but it doesn’t exist. To delimit your variable you
must use interpolation like this #{$var-name}.

When you use interpolation on a variable you simply
replace it with its value. Think of it as a simple search &
replace feature for variables.

jeremymouzin.com �25

https://jeremymouzin.com

Example 

style.scss

$class-name: my-great-class;
$attribute: border;

p.#{$class-name} { // Correct
 #{$attribute}-color: blue; // Correct
}

will produce: 

style.css

p.my-great-class {
 border-color: blue; }

jeremymouzin.com �26

https://jeremymouzin.com

You can even use interpolation within comments to store
the version of your website or web app:  

style.scss

$version: 1.4;

/* Version: #{$version} */

will produce: 

style.css

/* Version: 1.4 */

jeremymouzin.com �27

https://jeremymouzin.com

Project Structure Architecture

Let’s take a break from Sass syntax and think about how
and where to store your files.

Small Project

The simplest structure is everything in the same directory.  

project
├── index.html
├── style.css
└── style.scss

That’s simple and work for most little projects. It’s the
perfect structure to learn Sass.

But when you start to work on bigger projects, it will
become quickly limited.

jeremymouzin.com �28

https://jeremymouzin.com

Medium Project

If you have lots of files and several different stylesheets
you should use a directory to store them. 

medium-project
├── index.html 
├── *.html
└── stylesheets
 ├── style.css
 ├── style.scss
 ├── *.css
 └── *.scss

If you don’t want to mess up your source files and the CSS
stylesheets that are used for production, you should
separate the sources from the outputs.

It’s a good practice to upload only your output
files on your server and keep your sources in your
source control system only.

jeremymouzin.com �29

https://jeremymouzin.com

To achieve this, you can use this structure:  

better-medium-project
├── index.html 
├── *.html
├── src
│ └── style.scss
│ └── *.scss
└── stylesheets
 └── style.css
 └── *.css 

You would not upload the src directory to your web server,
but just the HTML files and stylesheets directory.

Big Project

For big projects with lots of files, reusable Sass
stylesheets and design systems in place, you should
check out this excellent article from The Sass Way or the
7:1 pattern from Sass Guidelines.

jeremymouzin.com �30

https://jeremymouzin.com
http://thesassway.com/beginner/how-to-structure-a-sass-project
https://sass-guidelin.es/#the-7-1-pattern

Final Note About Architecture

There are thousands of ways to structure your files for a
project. You’re free to use the structure you want, but keep
in mind these good practices.

1. Never upload source file to your web server, it will
bloat it over time.

2. Separate your source files from your output files. Use a
separate directory for each type. Common directories
names for source files are src, sass or scss. Common
directories for output files are dist, css, remote,
stylesheets. Pick one combination and stick with it.

3. Never use spaces in directory names or filenames.
Instead, use a hyphen or underscore like this my-
variables.scss or my_variables.scss. I prefer using
hyphens because they’re easier to type and read.  

jeremymouzin.com �31

BEST PRACTICES

https://jeremymouzin.com

Nested Rules

In CSS, it’s common to repeat selector rules like this:  

boring-repetition.css

h2 {
 font-size: 1.4em;
 margin: 1.8em 0 0.5em;
}

h2 .small {
 font-size: 0.7em;
 font-weight: normal;
}

h2 .medium {
 font-size: 1em;
 font-weight: normal;
}

To avoid these repetitions, Sass introduces nested rules.

jeremymouzin.com �32

https://jeremymouzin.com

To use them, simply put your children declarations (.small
and .medium) within the parent rule (h2) like this:  

boring-repetition.scss

h2 {
 font-size: 1.4em;
 margin: 1.8em 0 0.5em

 // This will produce the h2 .small rule
 .small {
 font-size: 0.7em;
 font-weight: normal;
 }

 // This will produce the h2 .medium rule
 .medium {
 font-size: 1em;
 font-weight: normal;
 }
}

Nested rules can work on several levels of nesting. Let’s
see this in an example. 

jeremymouzin.com �33

https://jeremymouzin.com

several-levels-of-nesting.scss

.parent {
 color: #000;

 // One level deep
 .child1, .child1a {
 color: #111;

 // Two levels deep
 .child2 {
 color: #222;
 }
 }

 // Back to level one
 .child3 {
 color: #333;
 }
}

will produce: 

jeremymouzin.com �34

https://jeremymouzin.com

several-levels-of-nesting.css

.parent {
 color: #000; }

 // One level deep
 .parent .child1, .parent .child1a {
 color: #111; }

 // Two levels deep
 .parent .child1 .child2, .parent .child1a .child2 {
 color: #222; }

 // Back to level one
 .parent .child3 {
 color: #333; }

By default the nested style applied to the CSS output lets
you see quickly the nested level thanks to indentation.

One indentation for the first level, two for the second, etc.

jeremymouzin.com �35

https://jeremymouzin.com

Referencing Parent Selector With
The & Special Character

Let’s say you want to specify a rule for the :hover state of
a .parent class. You need the selector .parent:hover so
you write something like this: 

this-will-not-work-sorry.scss

.parent {
 :hover {
 text-decoration: none;
 border-bottom: 1px solid blue;
 }
}

You guessed it, it doesn’t work!

Indeed it will produce something totally coherent for
nested rules normal processing flow but not very useful for
what you want to achieve: 

jeremymouzin.com �36

https://jeremymouzin.com

this-will-not-work-sorry.css

// See the space problem here?
.parent :hover {
 text-decoration: none;
 border-bottom: 1px solid blue; }

Sass naturally puts a space between the .parent and
the :hover child selector. So how can you produce
the .parent:hover selector?

By using the & special character. Here is the solution: 

this-works.scss

.parent {
 // Using the special & char will make the trick
 &:hover {
 text-decoration: none;
 border-bottom: 1px solid blue;
 }
}

jeremymouzin.com �37

https://jeremymouzin.com

will produce: 

this-works.css

// Now you’ve got .parent:hover without any space!
.parent:hover {
 text-decoration: none;
 border-bottom: 1px solid blue; }

Using the & character makes Sass behave like a
dumb search and replace feature.

Indeed, in the last example, the special & character has
just been replaced by the parent selector value within the
child value.

Let’s decompose the process so you can understand the
difference between the normal flow and the use of &.

Let’s first set a generic approach to how everything works
in general: 

jeremymouzin.com �38

!

https://jeremymouzin.com

generic-approach (pseudo Sass code)

<parent> {
 <child> {
 color: #111;
 }
}

Let’s use <parent> = .parent and <child> = .child. The
normal flow to produce the output of this file is:

1. <parent> <child>

2. .parent .child

Nothing fancy here, we replace each part with its value.
It’s a normal flow.

Let’s use <parent> = .parent and <child> = &:hover. Sass
output for this is just “.parent:hover” as we’ve seen earlier.

But if you respect the normal flow, step-by-step, it should
produce something like this:

jeremymouzin.com �39

https://jeremymouzin.com

1. <parent> <child>

2. .parent &:hover

3. .parent .parent:hover

Do you spot the difference on the output (step 3) here?
There is another .parent at the beginning!

So why Sass doesn’t produce this selector?

It’s because using the & special character breaks the
normal flow and use instead a very simple search and
replace function on the <child> value only.

Therefore if Sass sees a & character in the child value, the
step 1 “<parent> <child>” is replaced only by “<child>”.
This value becomes “&:hover”, which becomes
“.parent:hover”.

That’s an important concept to understand because
thanks to the & special character you’ll be able to create
selectors really easily! Let’s see some advanced
examples. 

jeremymouzin.com �40

https://jeremymouzin.com

advanced-example.scss

.parent {
 // You can use special & char wherever you need it!
 // At the beginning, in the middle or at the end
 &:hover { color: #000; }
 .child1 & .child1a { color: #111; }
 .child2 & { color: #222; }

 // Or at a deeper nested level
 .child3 {
 .child3-1 & { color: #333; }
 }

 // And even near other words!
 &-small { font-size: .5em; }
}

Read carefully the produced code below. You’ll see that
the & character makes Sass behave like a search and
replace simple feature:  

jeremymouzin.com �41

https://jeremymouzin.com

advanced-example.css

.parent:hover {color:#000}

.child1 .parent .child1a {color:#111}

.child2 .parent {color:#222}

.child3-1 .parent .child3 { color:#333}

.parent-small { font-size: .5em: } 

Using the & char will let you generate classes names very
easily based on the parent value. For example, you can
use that flexibility to build responsive containers:  

responsive-containers.scss

.container {
 max-width: 800px;

 &-medium { max-width: 600px; }
 &-small { max-width: 400px; }
}

jeremymouzin.com �42

https://jeremymouzin.com

Very handy to generate automatically classes names for
slightly different containers: 

responsive-containers.css

.container { max-width: 800px; }

.container-medium { max-width: 600px; }

.container-small { max-width: 400px; }

You can go one step further and use variables to manage
entirely the names of your classes right from one place!  

one-place-to-rule-them-all.scss

$container: '.container';

// Remember to use interpolation to make it work here!
#{$container} {
 max-width: 800px;

 &-medium { max-width: 600px; }
 &-small { max-width: 400px; }
}

jeremymouzin.com �43

https://jeremymouzin.com

Code Architecture Best Practices

We already talked about project architecture best
practices. But what about your code architecture? How do
you manage your code, variables, etc.?

1. Apply the DRY principle (Don’t Repeat Yourself): if you
need to change a color, a padding or whatever for the
whole website you’re coding, it should be easily done
by changing only one value at one place.

2. Extract common parts of your source files across all
your projects and put them into separate files. Reuse
them for new projects to speed up development. It will
also ensure design consistency across all your work.
This is called factorization or modularization.

3. Apply the KISS principle (Keep It Stupid, Simple):
your source files should be small. If they get too big,

jeremymouzin.com �44

BEST PRACTICES

https://jeremymouzin.com

split them into several files. One file for one purpose.
It’s better to work on several small files than one huge
file.

4. Extract all your personal style to a specific stylesheet:
your preferred margins, font families, border-radius
values, shadows… so you can apply them to a project
in seconds.

5. Take the time to name your variables properly.
Remember that you may read your code several
months after writing it so your variables names should
be meaningful and easy to use.

6. Use hyphen-delimited variables names like this  
$my-variable.

7. Prefix your names to the purpose of the variable, for a
color use $color-, for a margin, use $margin-, etc.
Why? Because your IDE auto-completion feature will
kick in right from the start and you’ll save a ton of time!

All the best practices have been listed, how can you apply
them? Well, that’s the purpose of the next chapter.

jeremymouzin.com �45

https://jeremymouzin.com

You’ll see how to use partials and the import feature to
create a clean and flexible code architecture. 

jeremymouzin.com �46

https://jeremymouzin.com

Partials and Import

Using several Sass source files in your project will make it
easier to maintain and more flexible.

You could already do this with the CSS built-in import
feature but it’s bad for network performances.

Indeed it requires one HTTP request for each file imported
through CSS import. That slows down the loading of your
website. Bad for users and for search engines ranking!

Always ship the least amount of CSS stylesheets
possible to minimize network payload.

How can you use several small source files and output
only one single file?

You must combine these several small source files
together into a single CSS stylesheet.

jeremymouzin.com �47

https://jeremymouzin.com

Import

Thankfully, Sass comes with a handy feature for that called
@import. The keyword @import will allow you to import any
source file within another source file. This way at the end
you can combine any number of files together into a
single one.

Most of the time you’ll use the import feature in
conjunction with partial files.

Partials

Partial files are regular Sass source files with one
particularity: their name starts with an underscore ‘_’.

This underscore prefix will tell Sass to not generate the
corresponding CSS output for this file. This is extremely
useful to keep your output directory clean.

Thanks to the @import feature, these partial files will allow
you to modularize your project into small pieces and bring
them back together into one single file. Let’s take an

jeremymouzin.com �48

https://jeremymouzin.com

example. 

my-current-main-big-source-file.scss

/* Color branding */
$color-primary: #C69;
$color-accent: #699;
$color-background: white;
$color-text: #6b717f;

/* Spacing */
$margin-h1: 2em;
$margin-h2: 1.2em;
$margin-h3: 0.8em;

$padding-p: 1.4rem 1rem;
$padding-pre: 2rem 1rem;
$padding-div: 1rem;

/* Visual style */
$border-thickness: 2px;
$border-radius: 6px;
$shadow-blur: 4px;
$shadow-spread: 6px;

/* Imagine lots of rules using these variables below */
// […]

jeremymouzin.com �49

https://jeremymouzin.com

This file can really start to get big quickly. To ease the
maintenance and flexibility you should split it into 4 files: 3
partials _colors.scss, _spacing.scss, _visual.scss and 1
main source file called style.scss: 

_colors.scss

$color-primary: #C69;
$color-accent: #699;
$color-background: white;
$color-text: #6b717f;

_spacing.scss

$margin-h1: 2em;
$margin-h2: 1.2em;
$margin-h3: 0.8em;

$padding-p: 1.4rem 1rem;
$padding-pre: 2rem 1rem;
$padding-div: 1rem;

jeremymouzin.com �50

https://jeremymouzin.com

_visual.scss

$border-thickness: 2px;
$border-radius: 6px;
$shadow-blur: 4px;
$shadow-spread: 6px;

To polish the code architecture you can separate those
partial files from the regular ones and put them into a
partials directory like this:  

project
├── index.html
├── src
│ ├── partials
│ │ ├── _colors.scss
│ │ ├── _spacing.scss
│ │ └── _visual.scss
│ └── style.scss
└── stylesheets
 └── style.css

jeremymouzin.com �51

https://jeremymouzin.com

This code architecture will allow you to use a single
command line to manage your whole project simply. From
the project directory, type: 

command line

sass --watch src:stylesheets

This simple command will tell Sass to take all the .scss
files contained in src and output the corresponding CSS
stylesheets into stylesheets.

Note that the sass program looks also for .scss files in
subdirectories.

So if you add a subdirectory unicorn in the src
subdirectory containing a new Sass file beautiful-
unicorn.scss, it will be reflected in the stylesheets
directory like this: 

jeremymouzin.com �52

https://jeremymouzin.com

project
├── index.html
├── src
│ ├── partials
│ │ ├── _colors.scss
│ │ ├── _spacing.scss
│ │ └── _visual.scss
│ ├── style.scss
│ └── unicorn
│ └── beautiful-unicorn.scss
└── stylesheets
 ├── style.css
 └── unicorn
 └── beautiful-unicorn.css

Let’s see what the style.scss will be made of now.

Bring Everything Back Together

To include those partial files into the main source file, we
must use the Sass @import feature.

It’s very easy to use: just provide the path to the file you
want to include, but without the leading underscore and

jeremymouzin.com �53

https://jeremymouzin.com

the extension. To include the file partials/_colors.scss, you
just add this line at the beginning of the main file:  

@import “partials/colors”;

Let’s build our style.scss related to our previous example
to see this feature in action:  

style.scss

@import “partials/colors”;
@import “partials/spacing”;
@import “partials/visual”;

/* Imagine now lots of rules using these variables */
// […]

That’s it! Modularizing your Sass source files like this is
extremely powerful, here are some advantages:

1. If you’re on a big team, a designer that wants to tweak
colors can do it modifying only one value in one file.

jeremymouzin.com �54

https://jeremymouzin.com

2. You avoid the nightmare of merging several persons
work on the same huge file every day.

3. If you want to see how a website feels with a new color
palette, you can simply switch the path of the import
line in the main style.scss file to use your brand new
partials/_colors-awesome.scss palette file!

4. Working on small files reduces the cognitive load and
the need to scroll up and down to find the things you
need to modify.

But that’s not finished! You can go one step further.

You can also split the CSS rules into several files. There is
no restriction here.

For example you could create a _buttons.scss that
handles whatever CSS rules is related to buttons. You
could create a _forms.scss partial file to manage forms,
etc.

The more separated files you have the more flexibility
you’ll get to create from scratch a website with a specific
combinations of all these files.

jeremymouzin.com �55

https://jeremymouzin.com

Feel free to explore the best architecture for your needs
and constraints, the possibilities are endless.  

jeremymouzin.com �56

https://jeremymouzin.com

Mixins

Mixins allow you to write Sass code once and reuse it
wherever you want in your source file.

The basics

You declare the code with @mixin and use it with @include
(don’t confuse it with @import). 

a-very-simple-mixin-example.scss

@mixin apply-green-border {
 border: 1px solid green;
 border-radius: 6px;
}

blockquote {
 @include apply-green-border;
}

will produce: 

jeremymouzin.com �57

https://jeremymouzin.com

a-very-simple-mixin-example.css

blockquote {
 border: 1px solid green;
 border-radius: 6px;
}

This is useful to avoid to repeat styles. You just have to
code them once, then you @include them.

Add Flexibility With Variables

Copying a defined style is great, but you can also use
variables in mixins. Let’s rewrite our simple example to
something a little bit more flexible. 

use-variables-in-mixins.scss

@mixin apply-border($color, $radius) {
 border: 1px solid $color;
 border-radius: $radius;
}

jeremymouzin.com �58

https://jeremymouzin.com

blockquote {
 @include apply-border(green, 6px);
}

This code will produce the exact same CSS as before.

When calling the mixin through @include, we just pass
arguments (green, 6px) to the mixin. The value green and
6px will be stored respectively in the variable $color and
$radius and used in place within the mixin.

Instead of passing green and 6px values, we can use
global variables instead:  

use-global-variables-in-mixins.scss

$color-border: green;
$size-radius: 6px;

@mixin apply-border($color, $radius) {
 border: 1px solid $color;
 border-radius: $radius;
}

jeremymouzin.com �59

https://jeremymouzin.com

blockquote {
 @include apply-border($color-border, $size-radius);
}

This will still produce the same CSS output. The difference
is that you have now a more generic mixin that can be
used to modify slightly the type of border you need.

You can even imagine a dedicated mixin to create custom
borders like this: 

custom-borders-mixin-generator.scss

@mixin apply-border($size-border, $type-border, $color,
$radius) {
 border: $size-border $type-border $color;
 border-radius: $radius;
}

blockquote {
 @include apply-border(2px, dotted, blue, 8px);
}

jeremymouzin.com �60

https://jeremymouzin.com

Nested Rules and Special & Character

Mixins are even more useful while using nested rules and
the special & character (parent selector).

You can apply some very advanced styles and layouts
using only mixins. 

nested-rules-and-parent-selector-in-mixins.scss

@mixin blockquote-model($color) {
 color: #ff0000;
 border: 1px solid $color;

 // Use special & char and nested rules
 &:before {
 display: block;
 content: '"';
 font-size: 4rem;
 }

 p {
 margin-left: 2rem;
 }
}

jeremymouzin.com �61

https://jeremymouzin.com

blockquote {
 @include blockquote-model(green);
}

will produce several new rules:  

nested-rules-and-parent-selector-in-mixins.css

blockquote {
 color: #ff0000;
 border: 1px solid green;
}

blockquote:before {
 display: block;
 content: '"';
 font-size: 12px;
}

blockquote p {
 margin-left: 2rem;
}

jeremymouzin.com �62

https://jeremymouzin.com

Declaring Entire CSS Rules

For now you always used mixins within a CSS rule. But
you can also use @include to declare entirely new CSS
rule via a mixin: 

declare-full-css-rule-via-mixin.scss

@mixin awesome-p {
 p {
 font-size: 2rem;
 color: #FF9800;
 margin: 2rem;
 }
}

@include awesome-p;

 will simply produce:

 

jeremymouzin.com �63

https://jeremymouzin.com

declare-full-css-rule-via-mixin.css

p {
 font-size: 2rem;
 color: #FF9800;
 margin: 2rem;
}

Include Mixins in Other Mixins

You can include a mixin into another mixin, making
compounds easy. 

simple-mixin-within-another-mixin.scss

@mixin text-blue { color: blue; }
@mixin background-grey { background-color: grey; }

@mixin info-style {
 @include text-blue;
 @include background-grey;
}

jeremymouzin.com �64

https://jeremymouzin.com

div#info {
 @include info-style;
}

will produce: 

simple-mixin-within-another-mixin.css

div#info {
 color: blue;
 background-color: grey;
}

You can even include a mixin within itself since Sass
version 3.3. I didn’t find any practical use for this yet
though.

Mixins Arguments Default Values

You can set a default value to the arguments passed in
mixins. Just use “$arg-name: <default-value>” when

jeremymouzin.com �65

https://jeremymouzin.com

declaring the mixin like this:  

using-default-values-in-mixins.scss

@mixin apply-border($thickness: 1px, $color: red) {
 border: $thickness solid $color;
}

div {
 @include apply-border;
 // You’ll get the same result with parenthesis:
 // @include apply-border();
}

If the $thickness and $color are not set when including
the mixin, then the default values will be used and it will
produce: 

using-default-values-in-mixins.css

div {
 border: 1px solid red;
}

jeremymouzin.com �66

https://jeremymouzin.com

Now imagine you want to use this mixin by setting only the
$color value, how can you do that?

Sass allows you to explicitly set specific argument when
calling the mixin by mentioning the argument name first:  

@include apply-border($color: blue);

Let’s see some possible combinations and their results:  

explicit-arguments-calls-combinations.scss

// Mixin declaration is:
// @mixin apply-border($thickness: 1px, $color: red)

div {
 @include apply-border;
 @include apply-border();
 // These 2 above will produce: border: 1px solid red;

 @include apply-border($color: blue);
 // Will produce: border: 1px solid blue;

jeremymouzin.com �67

https://jeremymouzin.com

 @include apply-border($color: blue, $thickness: 3px);
 // border: 3px solid blue;

 @include apply-border(5px);
 // border: 5px solid red;
}

Using Arguments List

Let’s say you want to use a mixin to manage the padding
top, right, bottom and left values.

You could write it like this:  

mixin-paddings.scss

@mixin paddings($top, $right, $bottom, $left) {
 padding: $top, $right, $bottom, $left;
}

Pretty straightforward. The issue with this declaration is
that you have to provide the 4 values each time. You can’t

jeremymouzin.com �68

https://jeremymouzin.com

use the CSS padding shorthand with 2 values (that sets
top and bottom paddings the same and left and right the
same). You can’t use the 1 value shorthand that sets all
the paddings to the same value either.

To get back this flexibility you can use an arguments list
(also called variable arguments). Here is how it works: 

arguments-list-paddings-mixin.scss

// Declare arguments list parameter thanks to ‘...’
@mixin paddings ($padding-list...) {
 padding: $padding-list;
}

.shorthand-2-values { @include paddings (1em, 2em); }
// top & bottom are 1em, left and right: 2em

.shorthand-1-value { @include paddings (3em); }
// top, right, bottom and left are 3em

You must use the arguments list parameter at the
end of your declaration.

jeremymouzin.com �69

!

https://jeremymouzin.com

Thanks to this feature, the previous source file will
produce this CSS: 

arguments-list-paddings-mixin.css

.shorthand-2-values {
 padding: 1em, 2em;
}

.shorthand-1-value {
 padding: 3em;
}

The padding example was a simple example to
demonstrate how it works. Let’s see a more useful
example with a multiple box-shadow list separated by a
comma. 

my-complex-multiple-box-shadow-generator.scss

@mixin box-shadow($shadows...) {
 box-shadow: $shadows;
}

jeremymouzin.com �70

https://jeremymouzin.com

// Include multiple box-shadow values to create a
// more complex layout
.shadows {
 @include box-shadow(0 10px 0 -5px #be6700,
 0 20px 0 -10px #66ccff,
 0 30px 0 -16px #dedcb9);
}

will produce: 

my-complex-multiple-box-shadow-generator.css

.shadows {
 box-shadow: 0 10px 0 -5px #be6700,
 0 20px 0 -10px #66ccff,
 0 30px 0 -16px #dedcb9;
}

You can spice things up using some variables to achieve
a more flexible box-shadow generator. For example
nothing prevents you to also set a border-radius like this:

jeremymouzin.com �71

https://jeremymouzin.com

rounded-multiple-box-shadow-generator.scss

@mixin box-shadow($border-radius, $shadows...) {
 border-radius: $border-radius;
 box-shadow: $shadows;
}

.rounded-box-with-multiple-shadows {
 @include box-shadow(6px,
 0 10px 0 -5px #be6700,
 0 20px 0 -10px #66ccff,
 0 30px 0 -16px #dedcb9);
}

will produce: 

rounded-multiple-box-shadow-generator.css

.rounded-box-with-multiple-shadows {
 border-radius: 6px;
 box-shadow: 0 10px 0 -5px #be6700, 0 20px 0 -10px
#66ccff, 0 30px 0 -16px #dedcb9; }

jeremymouzin.com �72

https://jeremymouzin.com

Inheritance

Using inheritance allows you to keep your source files
short and clean by applying the DRY principle. Indeed it
helps you declare a CSS rule and reuse it by extending it
through the @extend keyword. Let’s see an example.  

inheritance.scss

.message {
 border: 1px solid #C69;
 padding: 1em;
 color: #EEE;
}

.success {
 @extend .message;
 border-color: green;
}

will produce: 

jeremymouzin.com �73

https://jeremymouzin.com

inheritance.css

.message, .success {
 border: 1px solid #C69;
 padding: 1em;
 color: #EEE;
}

.success {
 border-color: green;
}

By using @extend, we want the .success class to extend
from the .message one. This means that the .success class
will get all the CSS properties from .message and add new
ones on top of it: border-color: green in this example.

Using inheritance helps also to avoid using several
classes in your HTML code within the class attribute.

For example you find this kind of HTML quite often
nowadays: 

jeremymouzin.com �74

https://jeremymouzin.com

multiple-classes-for-success-message.html

<div class=“message success”>Success!</div>

The author of this code wants to create a success
message. So he has to use both classes: message first
(the base class to display a message) and then style it for
success with the success class.

Wouldn’t it be better if you could simply use
class=“success” only? Thanks to inheritance, you can! Our
previous example would let this author use simply
class=“success” and it would have worked the same way.

Now you may wonder about 2 things:

- I could do the same with a mixin

- I could simply write the CSS for this instead of using
@extend

And you would be right… But!

jeremymouzin.com �75

https://jeremymouzin.com

Using a mixin instead of inheritance would duplicate your
code, making it bigger and that’s not good for web
performances.

Always use inheritance over mixin when possible
to reduce your website content size.

Also writing the CSS yourself may lead to errors and the
waste of countless hours looking for the selectors you
need to modify to make things work. Just adding @extend
within the rule you work on is far more convenient.

Last but not least, using @extend will automatically manage
additions and modifications related to the selector you
inherit from.

Let’s see a more advanced example so you can
understand the real power of inheritance and @extend.

Let’s start with the first example we used with a new rule
for hovering: 

jeremymouzin.com �76

https://jeremymouzin.com

advanced-example-inheritance.scss

.message {
 border: 1px solid #C69;
 padding: 1em;
 color: #EEE;
}

// The new rule you want to add
.message:hover {
 background-color: blue;
}

.success {
 @extend .message;
 border-color: green;
}

Using inheritance allows you to add new rules related
to .message and make all other rules that extend it
automatically inherit these modifications!

You don’t have to keep track of your modifications, Sass
will manage them for you.

jeremymouzin.com �77

https://jeremymouzin.com

advanced-example-inheritance.css

.message, .success {
 border: 1px solid #C69;
 padding: 1em;
 color: #EEE;
}

.message:hover, .success:hover {
 background-color: blue;
}

.success {
 border-color: green;
}

I used only classes in examples to simplify them but
inheritance works with any type of CSS selector.

Moreover, you can extend a rule using several different
selectors (multiple extends). You can extend selectors that
already inherit from other selectors (chaining extends).
Learn more about this here.

jeremymouzin.com �78

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#extend
https://jeremymouzin.com

Placeholder Selectors

Sass comes with a special selector called a placeholder
selector. A placeholder selector tells Sass to not generate
the corresponding CSS for that selector.

That nice little feature will help you keep your CSS leaner
and avoid names collisions. You remember that thanks to
inheritance we’ve been able to get rid of our .message
class from the HTML code?

This .message class doesn’t have to be in your CSS
anymore. But on the other hand you need to keep it so the
.success class can inherit from it. How do you do this?
Using a placeholder selector like this:  

placeholder-selector.scss

%message {
 border: 1px solid #C69;
 padding: 1em;
 color: #EEE;
}

jeremymouzin.com �79

https://jeremymouzin.com

.success {
 @extend %message;
 border-color: green;
}

.info {
 @extend %message;
 border-color: yellow;
}

will produce: 

placeholder-selector.css

.success, .info {
 border: 1px solid #C69;
 padding: 1em;
 color: #EEE;
}

.success {
 border-color: green;
}

jeremymouzin.com �80

https://jeremymouzin.com

.info {
 border-color: yellow;
}

As you can see the %message selector disappears from the
CSS but you can still use the code declared within
%message to extend other classes .success and .info.

This is very useful to be able to write blocks of CSS rules
and reuse them without worrying about classes names
collisions.

Using placeholders selectors can let you create classes
quickly based on existing code while keeping your CSS
clean and small.

To declare a placeholder selector, you need to add a ‘%’
symbol in your selector followed by a name. You can
construct more advanced selectors than the simple ones
we saw:

jeremymouzin.com �81

https://jeremymouzin.com

advanced-placeholder-selector.scss

// This won't be present in the CSS because it contains
// a placeholder selector
div %message-action #action {
 font-weight: bold;
 color: red;
}

// This won’t be present in the CSS either, same reason
%message {
 border: 1px solid #C69;
 padding: 1em;
 color: #EEE;
}

// Use several placeholder selectors
.success {
 @extend %message;
 @extend %message-action;
}

will produce: 

jeremymouzin.com �82

https://jeremymouzin.com

advanced-placeholder-selector.css

div .success #action {
 font-weight: bold;
 color: red;
}

.success {
 border: 1px solid #C69;
 padding: 1em;
 color: #EEE;
}

The .success class name is used at the exact place of the
placeholder selector.

Now that we’ve seen a lot about managing rules
properties and sharing them across your source files, let’s
talk about numbers and properties values.  

jeremymouzin.com �83

https://jeremymouzin.com

Operators

Sass lets you use mathematical operators like +, -, *, /
and % (modulo) to compute property values easily.

Instead of talking about theory, I’ll simply show you
several examples of how to use operators. You’ll easily
deduct how they work: 

simple-example-operators.scss

div {
 // Correct // CSS output
 width: 100px + 25px; // width: 125px;
 width: 100px - 25; // width: 75px;
 width: 10 * 25px; // width: 250px;
 width: 3.2rem + 2rem; // width: 5.2rem;
 width: 1em + .8; // width: 1.8em;
 width: 5 + 12%; // width: 17%;
 line-height: 3 * .5; // line-height: 1.5;

 // Incorrect: you can’t mix incompatible units
 width: 10em + 25px;
 width: 20px + 12%;

jeremymouzin.com �84

https://jeremymouzin.com

 // Incorrect: the CSS output has no meaning
 width: 100 + 25; // width: 125;
 font-size: (100 / 4); // font-size: 25;

 // Incorrect: produces invalid (squared) CSS units
 width: 4px * 20px;
 width: 3em * 2em;
}

Enforcing Divisions

The division symbol may be used in CSS to separate
values, for example: 

// There is no division here, it’s pure CSS code
// This line sets font-size: 20px, line-height: 30px
font: 20px/30px helvetica;

Sass will detect it and won’t compute a division. But
sometimes, you need to enforce a division. To do so, you
must use parenthesis and take care of the unit. Let’s see
what works and what doesn’t: 

jeremymouzin.com �85

https://jeremymouzin.com

enforcing-division.scss

div {
 // Correct: use parenthesis to enforce division
 width: (100px/4); // width: 25px;

 // Incorrect use of parenthesis
 width: ((100/4)px); // These 2 properties produce:
 width: (100/4)px; // width: 25 px; There is a
 // space between ‘25’ and ‘px’

 width: (100/4px); // Trying to divide unitless
 // value by pixels

 // Incorrect: produce invalid CSS values
 width: 100px/4; // width: 100px/4;
 width: 100/4px; // width: 100/4px;
 width: 100px/4px; // width: 100px/4px;
 width: (100px/4px); // width: 25;
}

Some special cases exist. When you use Sass variables
or other operators, you don’t need to use parenthesis:  

jeremymouzin.com �86

https://jeremymouzin.com

automatically-enforced-division.scss

div {
 $container-width: 400px;
 $padding: 20px;
 width: $container-width / 2;
 height: $padding * 2 + 100px / 2;
}

will produce: 

automatically-enforced-division.css

div {
 width: 200px;
 height: 90px;
}

jeremymouzin.com �87

https://jeremymouzin.com

Preventing Divisions

If you want to use variables with the CSS value separation
symbol /, use interpolation:  

use-interpolation-to-avoid-division.scss

$default-font-size: 1.8em;
div {
 font: #{$default-font-size}/1.5;
}

will produce what you want:  

use-interpolation-to-avoid-division.css

div {
 font: 1.8em/1.5;
}

jeremymouzin.com �88

https://jeremymouzin.com

What’s next?

This book covers Sass basics so you can be up and
running quickly. But if you’re looking for a front-end
developer job, you’ll need to read the Sass intermediate
book I’m writing (link coming soon).  

Support

This book is free but I put lots of hours into it. If you
learned a lot from it and enjoyed reading it, please
consider supporting my work by purchasing this book for
whatever price you like.

Thanks for your support. 

Feedback

I definitely want to improve this book over time so I would
love to hear your feedback to improve it!

jeremymouzin.com �89

https://gum.co/flxvU
https://gum.co/flxvU
https://jeremymouzin.com

How can I improve this book? Do you have suggestions?
Were some parts harder than others to understand?

Please don’t be shy and take the time to send me a little
email so I can improve this book to fit your needs.

Email me at: jeremy.mouzin@gmail.com, use email subject
“Sass ebook”.

jeremymouzin.com �90

Thanks!

mailto:jeremy.mouzin@gmail.com
https://jeremymouzin.com

